CUTS AND FLOWS OF CELL COMPLEXES

ART M. DUVAL, CAROLINE J. KLIVANS, AND JEREMY L. MARTIN

ABSTRACT. We study the vector spaces and integer lattices of cuts and
flows associated with an arbitrary finite CW complex, and their rela-
tionships to group invariants including the critical group of a complex.
Our results extend to higher dimension the theory of cuts and flows in
graphs, most notably the work of Bacher, de la Harpe and Nagnibeda.
We construct explicit bases for the cut and flow spaces, interpret their
coefficients topologically, and give sufficient conditions for them to be
integral bases of the cut and flow lattices. Second, we determine the pre-
cise relationships between the discriminant groups of the cut and flow
lattices and the higher critical and cocritical groups with error terms
corresponding to torsion (co)homology. As an application, we general-
ize a result of Kotani and Sunada to give bounds for the complexity,
girth, and connectivity of a complex in terms of Hermite’s constant.

1. INTRODUCTION

This paper is about vector spaces and integer lattices of cuts and flows
associated with a finite cell complex. Our primary motivation is the study
of critical groups of cell complexes and related group invariants. The crit-
ical group of a graph is a finite abelian group whose order is the number
of spanning forests. The definition was introduced independently in several
different settings, including arithmetic geometry [24], physics [10], and alge-
braic geometry [2] (where it is also known as the Picard group or Jacobian
group). It has received considerable recent attention for its connections to
discrete dynamical systems, tropical geometry, and linear systems of curves;
see, e.g., [3 [, [7, 19].

In previous work [I5], the authors extended the definition of the critical
group to a cell complex ¥ of arbitrary dimension. To summarize, the critical
group K (X) can be calculated using a reduced combinatorial Laplacian,
and its order is a weighted enumeration of the cellular spanning trees of 3.
Moreover, the action of the critical group on cellular (d — 1)-cochains gives a
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model of discrete flow on X, generalizing the chip-firing and sandpile models;
see, e.g., |4l 10].

Bacher, de la Harpe, and Nagnibeda first defined the lattices C and F of
integral cuts and flows for a graph [2]. By regarding a graph as an analogue of
a Riemann surface, they interpreted the discriminant groups C#/C and F*/F
respectively as the Picard group of divisors and as the Jacobian group of
holomorphic forms. In particular, they showed that the critical group K(G)
is isomorphic to both C*/C and F#/F. Similar definitions and results appear
in the work of Biggs [4].

In the present paper, we define the cut and flow spaces and cut and flow
lattices of a cell complex ¥ by

Cut(X) = imp 0™, Flow(X) = kerg 0,
C(¥) =img 0", F(X) = kerz 0,

where 0 and 9 are the top cellular boundary and coboundary maps of X.
In topological terms, cut- and flow-vectors are cellular coboundaries and
cycles, respectively. Equivalently, the vectors in Cut(X) support sets of
facets whose deletion increases the codimension-1 Betti number, and the
vectors in Flow(X) support nontrivial rational homology classes. In the
language of matroid theory, cuts and flows correspond to cocircuits and
circuits, respectively, of the cellular matroid represented by the columns
of 0.

In the higher-dimensional setting, the groups C*/C and F*/F are not nec-
essarily isomorphic to each other. Their precise relationship involves several
other groups: the critical group K(X), a dually defined cocritical group
K*(X), and the cutflow group Z"/(C & F). We show that the critical and
cocritical groups are respectively isomorphic to the discriminant groups of
the cut lattice and flow lattice, and that the cutflow group mediates between
them with an “error term” given by homology. Specifically, if dim3> = d,
then we have the short exact sequences

0-Z"/(CBF)— K(X)=C/C— T(Hy_1(%;Z)) — 0,
0— T(Hi1(Z;2) - Z"/(C® F) — K*(X) = F/F — 0

(Theorems and where T denotes the torsion summand. The sizes
of these groups are then given by

CE/Cl= K@) =7(2) =7(2)- t%
[FHF| = KX (2)] = 7(8) =7(D)/t%,
2" /(Co F)|=7(X)/t =77(%) - ¢t,

(Theorems and [8.2)), where t = |T(Hy_1(2;Z))| and 7(X) and 7*(X) are
the weighted enumerators

7(2) =Y |Haa (T Z), D) =) Ha(Q, 5 Z) P,
T T
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where both sums run over all cellular spanning forests T C ¥ (see equa-
tion ([3)) and Q is an acyclization of T (see Definition [7.3)).

Before proving these results, we study the cut space (Section , the flow
space (Section, and the cut and flow lattices (Section@ in some detail. We
obtain bases of the cut and flow spaces using the theory of cellular spanning
forests, developed by the authors in [I3], [14] for cell complexes satisfying
a connectedness condition and extended here (in Section |3|) to arbitrary
complexes (Theorem [3.5). For every cellular spanning forest Y C X, the
fundamental bonds of T give rise to a basis of the cut space (Theorem [4.7]).
Likewise, the fundamental circuits of T induce a basis of the flow space
(Theorem . Moreover, under certain conditions on T, these bases are in
fact integral bases for the cut and flow lattices (Theorems and .

In the graphic case, these basis vectors are signed characteristic vectors
of fundamental bonds and fundamental circuits; in particular, their entries
are all 0 and +1. In higher dimension, the supports of basis elements are
still fundamental bonds and fundamental circuits, but there is the additional
subtlety that their entries may not scale to +1, making it less clear how to
associate a canonical cut- or flow-vector with a bond or circuit. We prove
that the characteristic vectors which form the constructed bases of both the
cut and flow spaces can be scaled so that their entries are torsion coefficients
of homology groups of certain subcomplexes (Theorems and .

The idea of studying cuts and flows of matroids goes back to Tutte [2§].
More recently, Su and Wagner [27] define cuts and flows of a regular ma-
troid (i.e., one represented by a totally unimodular matrix M); when M is
the boundary matrix of a cell complex, this is the case where the torsion
coefficients are all trivial. Su and Wagner’s definitions coincide with ours;
their focus, however, is on recovering the structure of a matroid from the
metric data of its flow lattice.

In the final section of the paper, we generalize a theorem of Kotani and
Sunada [22], who observed that a classical inequality for integer lattices,
involving Hermite’s constant (see, e.g., [23]), could be applied to the flow
lattice of a graph to give a bound for girth and complexity. We prove
the corresponding result for cell complexes (Theorem , where “girth”
means the size of a smallest circuit in the cellular matroid (or, topologically,
the minimum number of facets supporting a nonzero homology class) and
“complexity” is the torsion-weighted count of cellular spanning trees.

2. PRELIMINARIES

In this section we review the tools needed throughout the paper: cell
complexes, cellular spanning trees and forests, integer lattices, and matroids.

2.1. Cell complexes. We assume that the reader is familiar with the basic
topology of cell complexes; for a general reference, see [20].

Throughout the paper, ¥ will denote a finite CW complex (which we refer
to simply as a cell complex) of dimension d. We adopt the convention that ¥
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has a unique cell of dimension —1 (as though it were an abstract simplicial
complex); this will allow our results to specialize correctly to the case d = 1
(i.e., that ¥ is a graph). We write 3; for the set of i-dimensional cells in X,
and X for the i-dimensional skeleton of X, i.e., Yy =LiUXi1U- U2,
A cell of dimension d is called a facet.

Unless otherwise stated, every d-dimensional subcomplex I' C ¥ will be
assumed to have a full codimension-1 skeleton, i.e., I'(y_1) = ¥(4_1). Accord-
ingly, for simplicity of notation, we will often make no distinction between
the subcomplex I' itself and its set I'y of facets.

The symbol C;(¥) = C;(X; R) denotes the group of i-dimensional cellular
chains with coefficients in a ring R. The ¢-dimensional cellular boundary
and coboundary maps are respectively 0;(3; R): C;(3; R) — C;j—1(%; R) and
0 (E; R): Ci—1(X; R) — Ci(%; R); we will write simply 0; and 9 whenever
possible.

The ** reduced cellular homology and cohomology groups of ¥ are re-
spectively H;(X; R) = kerd;/imd; 1, and H (X; R) = ker 97 ,/im ;. We
say that X is R-acyclic in codimension one if ﬁd_l(Z; R) = 0. For a graph
(d =1), both Q- and Z-acyclicity in codimension one are equivalent to con-
nectedness. The i*" reduced Betti number is 3;(X) = dim H;(2;Q), and
the it" torsion coefficient t;(¥) is the cardinality of the torsion subgroup
T(Hi (53 2)).

A pair of complexes I' C ¥ induces a relative complex (X,T"), with rel-
ative homology and cohomology H;(X,T; R) and H*(X,T;R) and torsion
coefficients t;(X,T") = |T(H;(%,T; Z))|.

We will frequently use the fact that

T(Hy-1(3;Z2)) = T(HY(3;Z)) (1)

which is a special case of the universal coefficient theorem for cohomology
[20, p. 205, Corollary 3.3].

2.2. Spanning Forests and Laplacians. Our work on cuts and flows will
use the theory of spanning forests in arbitrary dimensions. Define a cellular
spanning forest (CSF) of 3 to be a subcomplex T C X such that T(4_y) =
E(dfl) and

Hy(Y;Z) =0, (2a)
rank Hy_1(Y;Z) = rank Hy_(3;7Z), and (2b)
Yal = 1S4l = Ba() + Ba1 (D). (2¢)

These conditions generalize the definition of a spanning foresiﬂ of a graph G:
respectively, it is acyclic, connected, and has n — ¢ edges, where n and c are
the numbers of vertices and components of G. Just as in the graphic case,

any two of the conditions , , together imply the third. An

IThat is, a maximal acyclic subgraph of G, not merely an acyclic subgraph containing
all vertices.
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equivalent definition is that a subcomplex T C 3 is a cellular spanning
forest if and only if its d-cells correspond to a column basis for the cellular
boundary matrix 0 = 94(%).

In the case that ¥ is Q-acyclic in codimension one, this definition special-
izes to our earlier definition of a cellular spanning tree [14) Definition 2.2].

There are two main reasons that enumeration of spanning forests of cell
complexes is more complicated than for graphs. First, many properties of
graphs can be studied component by component, so that one can usually
make the simplifying assumption of connectedness; on the other hand, a
higher-dimensional cell complex cannot in general be decomposed into dis-
joint pieces that are all acyclic in codimension one. Second, for complexes of
dimension greater than or equal to two, the possibility of torsion homology
affects enumeration.

Define the it" up-down, down-up and total Laplacian operatorsﬂ on X by

LY = 9,105 Ci(3; R) — Ci(3; R),
L = 070 Ci(35 R) — Ci(S R),
Lot = ppd 4 pdu
Moreover, define the complexity of 3 as
() =)= > |Hia(T:2)P (3)
CSFs TCX

The cellular matriz-tree theorem [14, Theorem 2.8] states that if ¥ is Q-
acyclic in codimension one and Ly is the submatrix of LY (X) obtained
by deleting the rows and columns corresponding to the facets of a (d — 1)-
spanning tree T, then

Hy »(%;7)?
T(E) _ | ~d 2( ) )’

|Hy—o(Y5 Z)?

In Section [3| we will generalize this formula to arbitrary cell complexes (i.e.,

not requiring that ¥ be Q-acyclic in codimension one). If G is a connected

graph, then 7(G) is just the number of spanning trees, and we recover the
classical matrix-tree theorem of Kirchhoff.

det L+

2.3. Lattices. Starting in Section [f], we will turn our attention to lattices
of integer cuts and flows. We review some of the general theory of integer
lattices; see, e.g., [Il, Chapter 12|, [I8, Chapter 14|, |21, Chapter IV].

A lattice L is a discrete subgroup of a finite-dimensional vector space V/;
that is, it is the integer linear combinations of some basis of V. Every
lattice £ C R" is isomorphic to Z" for some integer r < n, called the
rank of L. The elements of £ span a vector space denoted by £ ® R. For
L C 7", the saturation of L is defined as £ = (£ ® R) NZ™. An integral

2These are discrete versions of the Laplacian operators on differential forms of a Rie-
mannian manifold. The interested reader is referred to [16] and [I2] for their origins in
differential geometry and, e.g., [11 [I7, [25] for more recent appearances in combinatorics.
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basis of L is a set of linearly independent vectors vy, ...,v, € L such that
L ={civ1+- -+ ¢ € Z}. We will need the following fact about integral
bases of lattices; the equivalences are easy consequences of the theory of free
modules (see, e.g., [I, Chapter 12], [2I, Chapter IV]):

Proposition 2.1. For any lattice L C 7, the following are equivalent:

(a) BEwvery integral basis of L can be extended to an integral basis of Z".

(b) Some integral basis of L can be extended to an integral basis of Z".

(¢) L is a summand of Z", i.e., Z"™ can be written as an internal direct
sum L& L.

(d) L is the kernel of some group homomorphism Z" — 7™.

(e) L is saturated, i.e., L = L.

(f) Z™/L is a free Z-module, i.e., its torsion submodule is zero.

Fixing the standard inner product (-,-) on R", we define the dual lattice
of L by

LL={veLR: (v,w) EZ Yw e L}.

Note that £* can be identified with the dual Z-module £* = Hom(£, Z), and
that (£%) = L£. A lattice is called integral if it is contained in its dual; for
instance, any subgroup of Z" is an integral lattice. The discriminant group
(or determinantal group) of an integral lattice £ is £F/L; its cardinality
can be calculated as det M7 M, for any matrix M whose columns form an
integral basis of £. We will need the following facts about bases and duals
of lattices.

Proposition 2.2. [I8] Section 14.6] Let M be an n x r integer matriz.

(a) If the columns of M form an integral basis for the lattice L, then the
columns of M(MTM)~" form the corresponding dual basis for LF.

(b) The matriz P = M(MTM)™*MT represents orthogonal projection
from R™ onto the column space of M.

(¢c) If the greatest common divisor of the v X r minors of M is 1, then
LF is generated by the columns of P.

2.4. The cellular matroid. Many results of the paper may be expressed
efficiently using the language of matroids. For a general reference on ma-
troids, see, e.g., [26]. We will primarily consider cellular matroids. The cel-
lular matroid of ¥ is the matroid M(X) represented over R by the columns
of the boundary matrix 0. Thus the ground set of M(X) naturally cor-
responds to the d dimensional cells ¥4, and M (X) records which sets of
columns of 0 are linearly independent. If 3 is a graph, then M(X) is its
usual graphic matroid, while if ¥ is a simplicial complex then M(X) is its
simplicial matroid (see [9]).

The bases of M(X) are the collections of facets of cellular spanning forests
of ¥. If r is the rank function of the matroid M (X), then for each set of facets
B C ¥4, we have r(B) = rank g, where 0p is the submatrix consisting of
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the columns indexed by the facets in B. Moreover, we have
r(2) := r(Xq) = rank M(X) = rank & = |Sg| — 84(%)

by the definition of Betti number.

A set of facets B C X4 is called a cut if deleting B from X increases its
codimension-one homology, i.e., 34_1 (X \ B) > f4_1(%). A cut B is a bond
ifr(X\B)=r(X)—1,but r((X\ B)Uo) =r(X) for every 0 € B. That is,
a bond is a minimal cut. In matroid terminology, a bond of ¥ is precisely
a cocircuit of M(X), i.e., a minimal set that meets every basis of M(X).
Equivalently, a bond is the complement of a flat of rank 7(X) — 1. If T is a
cellular spanning forest (i.e., a basis of M(X)) and o € T, is a facet, then
the fundamental bond of the pair (Y, o) is

bo(Y,o0) =cU{peXs\YT: T\oUpisaCSF}. (4)

This is the fundamental cocircuit of the pair (T, o) of M(X) [26] p. 78].

While we will frequently adopt a matroid-theoretic perspective, it is im-
portant to point out that the cut and flow spaces and lattices of a complex X
are not matroid invariants, i.e., they are not determined by the cellular ma-
troid M(X). (See [27] for more on this subject.) Below is a table collecting
some of the standard terminology from linear algebra, graph theory, and
matroid theory, along with the analogous concepts that we will be using for
cell complexes.

Linear algebra Graph Matroid Cell complex
Column vectors Edges Ground set Facets
Independent set Acyclic subgraph Independent set  Acyclic subcomplex
Min linear dependence Cycle Circuit Circuit
Basis Spanning forest Basis CSF
Set meeting all bases Disconnecting set Codependent set Cut
Min set meeting all bases Bond Cocircuit Bond
Rank # edges in spanning forest Rank # facets in CSF

Here “codependent” means dependent in the dual matroid.

3. ENUMERATING CELLULAR SPANNING FORESTS

In this section, we count the cellular spanning forests of an arbitrary cell
complex Y. This will be necessary for our calculations of cut and flow vec-
tors in Sections [4] and [5] and may be of independent interest. The main
result (Theorem generalizes the simplicial and cellular matrix-tree the-
orems of [13] and [I4] (in which we required that ¥ be Q-acyclic in codi-
mension one). The arguments require some tools from homological algebra,
in particular the long exact sequence for relative homology and some facts
about the torsion-subgroup functor. The details of the proofs are not nec-
essary to understand the constructions of cut and flow spaces in the later
sections.

Let ¥ be a d-dimensional cell complex with rank r. Let I' C X be a sub-
complex of dimension less than or equal to d — 1 such that I'(g_g) = X(g_9)-
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Thus the inclusion map i: I' — X induces isomorphisms . : I:Ik(I‘;Q) —
Hi(3;Q) for all k < d — 2.

Definition 3.1. The subcomplex I' C ¥ is called relatively acyclic if in fact
the inclusion map i: I' — ¥ induces isomorphisms i..: Hy(I'; Q) — Hy(X; Q)
for all k < d.

By the long exact sequence for relative homology, I' is relatively acyclic if
and only if Hy(3; Q) — ﬁd(E, I'; Q) is an isomorphism and Hj(3,T; Q=0
for all k¥ < d. These conditions can occur only if |I'y_1| = |[X4-1| — . This
quantity may be zero (in which case the only relatively acyclic subcomplex
is Z(d_Q)). Two additional special cases are worth noting. First, if d = 1,
then a relatively acyclic complex consists of one vertex in each connected
component. Second, if ﬁd_l(E; Q) = 0, then I is relatively acyclic if and
only if it is a cellular spanning forest of ¥(4_1).

For a matrix M, we write M4 g for the restriction of M to rows indexed
by A and columns indexed by B.

Proposition 3.2. Let I' C Y C X be subcomplexes such that dimY = d;
diml' =d—1; |Ty| =r; [Tg1| = [Zg-1] = 7; T(g—1) = X(a-1); and T'(q_g) =
Y(a—2)- Also, let R =4 1\ T'. Then the following are equivalent:

(a) Ther X r square matriz & = Or,x is nonsingular.

(b) Hy(Y,T;Q) =0 and Hy_(Y,T;Q) = 0.

(C> ﬁd(T7F; Q) =0 or ﬁdfl(Tv F; Q) =0.

(d) Y is a cellular spanning forest of ¥ and T" is relatively acyclic.

Proof. The cellular chain complex of the relative complex (T, T") is

0 CyT.T3Q) = Q" 2 Gy (T,15Q) = Q" — 0

with other terms zero. If d is nonsingular, then I:Id(T, I';Q) and Hy (T, T Q)
are both zero; otherwise, both are nonzero. This proves the equivalence of

(a), (b) and (c).

Next, note that Hy(I'; Q) = 0 (because I' has no cells in dimension d) and
that Hy o(T,T5Q) = 0 (because I'(4_gy = T(4_2)). Accordingly, the long
exact sequence for relative homology of (T,T") is

0 — Hy(T;Q) — Hy(T,T; Q)
— Hy 1(T;Q) = Ha 1 (1;Q) — Hy 1 (Y, T5Q) (5)
— Hyg_5(T;Q) — Hy_5(T;Q) — 0.

If Hy(Y,T;Q) = Hy_1(Y,T;Q) = 0, then Hy(Y;Q) = 0 (which says that T
is a cellular spanning forest) and the rest of splits into two isomorphisms
that assert precisely that I is relatively acyclic (recall that Hy_;(T;Q) =
Hy_1(%;Q) when T is a cellular spanning forest). This implication is re-
versible, completing the proof. O
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The torsion subgroup of a finitely generated abelian group A is defined as
the subgroup

T(A) ={x € A: kx =0 for some k € Z}.

Note that A = T(A) if and only if A is finite. The torsion functor T is left-
exact [2I, p. 179]. Moreover, if A - B — C — 0 is exact and A = T(A),
then T(A) — T(B) — T(C) — 0 is exact. We will need the following
additional fact about the torsion functor.

Lemma 3.3. Suppose we have a commutative diagram of finitely generated
abelian groups

f g h J

0 A B c D E 0
S
0 AV e 0

such that both rows are exact; A, A" are free; a is an isomorphism; 3 is sur-
jective; and C,C" are finite. Then there is an induced commutative diagram

0—~TB&G—=TC —TD—TE—0 (6)

i Voo

0—TB &G—TC'—TD —TE —0
such that G is finite and both rows are exact. Consequently
TB|-|TC'|-[TD| - |[TE'| = |TB| - [TC| - [TD'| - [TE.  (7)

Proof. First, let Z be a maximal-rank free summand of D, ie., D = Z @
TD. Then im(h) € TD. By exactness at E, the map j must map Z
isomorphically onto a free summand of E. Hence ker j C TD as well, and
replacing D, E with their torsion summands preserves exactness. The same
argument implies that we can replace D', £’ with TD', TE'.

Second, note that A, A, B, B’ all have the same rank (since the rows are
exact, C,C" are finite, and « is an isomorphism). Hence f(A) is a maximal-
rank free submodule of B; we can write B = TB @ F, where F' is a free
summand of B containing f(A). Likewise, write B = TB' @ F’, where F' is
a free summand of B’ containing f’'(A’). Meanwhile, 3 is surjective, hence
must restrict to an isomorphism F' — F’, which induces an isomorphism
F/f(A) — F'/f'(A"). Abbreviating this last group by G, we obtain the
desired diagram @ . Since kerg = im f C F, the map g: TB® G — TC' is
injective, proving exactness of the first row; the second row is exact by the
same argument. Exactness of each row implies that the alternating product
of the cardinalities of the groups is 1, from which the formula follows. [

Proposition 3.4. Let ¥ be a d-dimensional cell complex, let T C ¥ be
a cellular spanning forest, and let I' C X be a relatively acyclic (d — 1)-
subcomplex. Then

[ta—1 (V)] - [6a—1(E, )] = |ta—1(X)] - [ta—1 (T, ).
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Proof. The inclusion T C ¥ induces a commutative diagram

—

0 Hy_1(03Z) = Hy_1(T32) = Hyy(Y, T3 Z) = Hyo (T3 Z) = Hy_s(

| | l l l

0> Hy_1(03 Z) = Hyy (S5 2) = Hyy (8,13 2) — Hy_o(D3 Z) — Hy (55 Z) =0

;Z) =0

14
14
14

whose rows come from the long exact sequences for relative homology. (For
the top row, the group ﬁd(T,F; Z) is free because dim YT = d, and on the
other hand is purely torsion by Proposition so it must be zero. For
the bottom row, the condition that I' is relatively acyclic implies that i,
is an isomorphism over Q; therefore, it is one-to-one over Z.) The groups
ﬁ[d_l(T,F; Z) and fId_l(E,F;Z) are purely torsion. The first, fourth and
fifth vertical maps are isomorphisms (the last because Y (4_;) = ¥4_1)) and
the second is a surjection by the relative homology sequence of the pair
(X,7) (since the relative complex has no cells in dimension d — 1.) The
result now follows by applying Lemma [3.3] and canceling like terms. (]

As a consequence, we obtain a version of the cellular matrix-forest theo-
rem that applies to all cell complexes (not only those that are Q-acyclic in
codimension one).

Theorem 3.5. Let 3 be a d-dimensional cell complex, let I' C % be a rela-
tively acyclic (d — 1)-dimensional subcomplex, and let Ly be the restriction
of L34, (T) to the (d — 1)-cells of T'. Then

T4(3) = tdtil;(l% det L.
Proof. By the Binet-Cauchy formula and Propositions and we have
det L = det opdf = > (detdry)? = > taa(Y,T)?
TCE4: [T]|=r(S) CSFs YC%y
tg-1(3,T)? tg-1(3,T)?
B idig(z’))g cspgr:gzd (07 = idi(l(é)z) )
and solving for 74(X) gives the desired formula. O

If Hy_1(X;7Z) = T(Hy_1(X;Z)), then the relative homology sequence of
the pair (3,I") gives rise to the exact sequence

0— T(Hy1(%;2)) — T(Hg_1(2,T;2)) — T(Hy_o(I; 7)) — T(Hy_2(%;Z)) — 0

which implies that t;_1(X)/tq—1(3,T) = tg_2(X)/ta—2(I"), so Theorem (3.5
ta_o(%)?
ta—2(T)?
versions of the cellular matrix-tree theorem [14, Theorem 2.8(2)].

becomes the formula 74(X) = det Lr. This was one of the original
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4. THE CUT SPACE

Throughout this section, let 3 be a cell complex of dimension d and rank r
(that is, every cellular spanning forest of ¥ has r facets). For each ¢ < d,
the i-cut space and i-flow space of X are defined respectively as the spaces
of cellular coboundaries and cellular cycles:

Cut;(X) = im(9;: C;i—1(X,R) — C3(%,R)),
FlOWl(E) = ker(&,-: CZ(Z,R) — i_l(Z,R)).

We will primarily be concerned with the case i = d. For i = 1, these are the
standard graph-theoretic cut and flow spaces of the 1-skeleton of 3.

There are two natural ways to construct bases of the cut space of a graph,
in which the basis elements correspond to either (a) vertex stars or (b) the
fundamental circuits of a spanning forest (see, e.g. [I8, Chapter 14]). The
former is easy to generalize to cell complexes, but the latter takes more
work.

First, if G is a graph on vertex set V and R is a set of (“root”) vertices,
one in each connected component, then the rows of 9 corresponding to the
vertices V' \ R form a basis for Cut;(G). This observation generalizes easily
to cell complexes:

Proposition 4.1. A set of r rows of 0 forms a row basis if and only if the
corresponding set of (d — 1)-cells is the complement of a relatively acyclic
(d — 1)-subcomplez.

This is immediate from Proposition Recall that if fId_l(Z; Q) =0,
then “relatively acyclic (d — 1)-subcomplex” is synonymous with “spanning
tree of the (d — 1)-skeleton”. In this case, Proposition is also a conse-
quence of the fact that the matroid represented by the rows of dy is dual to
the matroid represented by the columns of 9y [14], Proposition 6.1].

The second way to construct a basis of the cut space of a graph is to fix a
spanning tree and take the signed characteristic vectors of its fundamental
bonds. In the cellular setting, it is not hard to show that each bond supports
a unique (up to scaling) vector in the cut space (Lemma and that
the fundamental bonds of a fixed cellular spanning forest give rise to a
vector space basis (Theorem [4.7)). (Recall from Section [2| that a bond in
a cell complex is a minimal collection of facets whose removal increases
the codimension-one homology, or equivalently a cocircuit of the cellular
matroid.) The hard part is to identify the entries of these cut-vectors. For
a graph, these entries are all 0 or =1. In higher dimension, this need not
be the case, but the entries can be interpreted as the torsion coefficients of
certain subcomplexes (Theorem . In Section |5, we will prove analogous
results for the flow space.

4.1. A basis of cut-vectors. Recall that the support of a vector v =
(v1,...,v,) € R™is the set

supp(v) = {i € [n]: v; # 0}.
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Proposition 4.2. [26, Proposition 9.2.4]. Let M be a r X n matriz with
rowspace V. C R™, and let M be the matroid represented by the columns
of M. Then the cocircuits of M are the inclusion-minimal elements of the

family Supp(V') := {supp(v): v € V'\ {0}}.
Lemma 4.3. Let B be a bond of . Then the set
Cutp(X) = {0} U {v € Cuty(X2): supp(v) = B}

is a one-dimensional subspace of Cuty(X). That is, up to scalar multiple,
there is a unique cut-vector whose support is exactly B.

Proof. Suppose that v, w are vectors in the cut space, both supported on B,
that are not scalar multiples of each other. Then there is a linear combina-
tion of v, w with strictly smaller support; this contradicts Proposition 4.2]
On the other hand, Proposition also implies that Cutp(X) is not the
zero space; therefore, it has dimension 1. [l

We now know that for every bond B, there is a cut-vector supported on B
that is uniquely determined up to a scalar multiple. As we will see, there
is a choice of scale so that the coefficients of this cut-vector are given by
certain minors of the down-up Laplacian L = L3%(%) = 9*9 (Lemma ;
these minors (up to sign) can be interpreted as the cardinalities of torsion
homology groups (Theorem .

In choosing a scale, the first step is to realize the elements of Cutp(X)
explicitly as images of the map 0*. Fix an inner product (-, -) on each chain
group C;(X;R) by declaring the i-dimensional cells to be an orthonormal
basis. (This amounts to identifying each cell with the cochain that is its
characteristic function.) Thus, for a € C;(X;R), we have supp(a) = {o €
Yt (0,a) # 0}. Moreover, for all 5 € C;_1(X;R), we have by basic linear
algebra

(Oc, B) = (a, 070) . (8)

Lemma 4.4. Let B be a bond of ¥ and let U be the space spanned by
{00: 0 € ¥4\ B}. In particular, U is a subspace of im0 of codimension
one. LetV be the orthogonal complement of U inim 0, and let v be a nonzero
element of V.. Then supp(0*v) = B.

Proof. First, we show that 0*v # 0. To see this, observe that the column
space of 9 is U + Rwv, so the column space of 0*0 is 9*U + Rd*v. However,
rank(0*0) = rankd = r, and dimU = r — 1; therefore, 9*v cannot be the
zero vector. Second, if o € ¥4\ B, then do € U, so (0*v,0) = (v,00) = 0. It
follows that supp(0*v) C B, and in fact supp(9*v) = B by Proposition

O

Given a bond B, let A = {o01,...,0,-1} be a cellular spanning forest
of ¥\ B. Fix a facet 0 = 0, € B, so that AU is a cellular spanning forest
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of ¥. Define a vector
T

v=va5=) (1) (det LYy 0\,,)00; € Ca1(552)
j=1

so that

T

v = Z(_l)j (det Lil,lAUU\Uj)LduUj S Cutd(E). (9)
j=1

Lemma 4.5. For the cut-vector O*v defined in equation @D,
I*v = Z(det L?&Jp,AUa)p'
pEB

In particular, supp(0*v) = B.
Proof. For each p € B,

T

(0" v, p) = Z(—l)j det L?ql,lAuJ\aj <Ldua]~, ,0>
j=1

= (—1)/ det Lj‘jAUU\Uj (90 ;,0p)
j=1

T
' d d
= Z(—l)J det LY 4uo\o, Lo,
=1

_ du
= det LAUp,AUm

where the last equality comes from expanding the row corresponding to p.
Note that det Lj‘bijUU # 0 for p = o, so *v # 0. On the other hand,

by Cramer’s rule, v is orthogonal to doy,...,00,_1, so in fact (0*v,p) =0
for all p € ¥4\ B. This establishes the desired formula for 0*v, and then
supp(9*v) = B by Lemma O

Equation @ does not provide a canonical cut-vector associated to a given
bond B, because 0*v depends on the choice of A and 0. On the other
hand, the bond B can always be expressed as a fundamental bond bo(Y, o)
(equivalently, fundamental cocircuit; see equation in Section by
taking o to be an arbitrary facet of B and taking T = A U o, where A
is a maximal acyclic subset of ¥\ B. This observation suggests that the
underlying combinatorial data that gives rise to a cut-vector is really the
pair (Y, 0).

Definition 4.6. Let T = {01, 09,...,0,} be a cellular spanning forest of ¥,
and let 0 = o, € Y. The (uncalibrated) characteristic vector of the bond
bo(Y, o) is:
T
X(T7 U) = Z(il)] (det L%H\U,T\Uj)l’duo-j
j=1
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FIGURE 1. (a) The bipyramid ©. (b) A simplicial spanning
tree (unfolded). (c) Deleting the bond {123,134, 125}.

By Lemma taking A =T \ o, we have
)_((T, U) = Z (det L%'u\aUp,T)p7
pEbo(T,0)
a cut-vector supported on bo(Y, o).

The next result is the cellular analogue of [I8, Lemma 14.1.3].

Theorem 4.7. The family {x(Y,0): 0 € Y} is a R-vector space basis for
the cut space of 3.

Proof. Let 0 € Y. Then supp x(1,0) = bo(Y, o) contains o, but no other
facet of T. Therefore, the set of characteristic vectors is linearly indepen-
dent, and its cardinality is |Y4| = r = dim Cuty(X). O

Example 4.8. The equatorial bipyramid is the two-dimensional simplicial
complex © with facet set {123,124,125,134,135,234,235} (Figure [Ij(a)).
Let T be the simplicial spanning tree with facets {123,124, 234,135,235}
(unfolded in Figure [1[b)). Then

bo(Y,123) = {123,125, 134}, bo(Y, 124) = {124,134},
bo(Y,135) = {135,125}, bo(Y,234) = {234,134},
bo(Y,235) = {235,125}

In each case, the removal of the bond leaves a 1-dimensional hole (as shown
for the bond {123, 125,134} in Figure[I|c)). By Theorem we have

X(Y,123) = 75([123] + [125] — [134]), x(Y,124) = 75([124] + [134]),
x(T1,135) = 75([125] + [135]), X(T1,234) = 75([134] + [234]),
x(T,235) = 75([235] — [125]),

which indeed form a basis for Cuty(0).
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4.2. Calibrating the characteristic vector of a bond. The term “char-
acteristic vector” suggests that the coefficients of Y (T, o) should all be 0
or 1, but this is not necessarily possible, even by scaling, as Example
below will show. We would like to define the characteristic vector of a bond
so that it carries combinatorial or topological information, avoiding extra
factors such as the 75 in Example We will show that the number

tg_1(%,T)?

pr = ta-1(T) ; BP0 (10)

where the sum runs over all relatively acyclic (d — 1)-subcomplexes I' C 3,
divides every coefficient of the characteristic vector. Moreover, we will show
that the entries of “%X(T, o) are (up to sign) the torsion coefficients of the
cellular forests {Y \ o U p} for p € bo(Y, o).

Let eﬁ o, be the relative sign of do, do’ with respect to JA; that is, it is
+1 or —1 according to whether 0o and 9o’ lie on the same or the opposite
sides of the hyperplane in im 0 spanned by dA. In the language of oriented
matroids, this sign is simply a product of the entries corresponding to do and
da’ in one of the cocircuits corresponding to the hyperplane and determines
the relative signs of a basis orientation on AU o and AU o’ [6, Section 3.5].

Proposition 4.9. Let X be a cell complex of rank r. Let YT = AU o and
Y = AU’ be d-dimensional cellular spanning forests of . Let L%UT, be
the restriction of the down-up Laplacian LY = 0*0 to the rows indexed by
T and the columns indexed by Y'. Then

det L%{IT/ = det Oy Oy = S/LTtd_l(T,)

_ A
where € = €0 ol

Proof. By the Binet-Cauchy formula, we have
det L%"‘T/ = Z(det Oy g)(det Ogyr) = Z(det Os,v)(det Og v/), (11)
S S

where the sum runs over all sets S C ¥;_; with |S| = r, and Jg v is the corre-
sponding r X r submatrix of . By Proposition det ds v is nonzero if and
only if I's = X431 \ S is relatively acyclic, and for those summands we have
by Proposition |det Osr| = tq—1(T,T's) = tg_1(L)tg—1(2,T's)/ta—1(2).
The sign of each summand in equation is just €, so

det LYy, = Z(det dsx)(det g y+)

- ta1(V)ta—1(5,Ts)\ [(ta—1(T)ta—1(E,T's)
Z( ) >< )

t 1)t
:Sdl dl thl

ta—1(
= eprty 1 (Y’ ) O
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Theorem 4.10. Let B be a bond. Fiz a facet o € B and a cellular forest
A C ¥4\ B, so that in fact B = bo(A U 0,0). Define the characteristic
vector of B with respect to A as

1
Xa(B) = —x(AUo,0) = > & ta_1(AUp) p.
Hx ey

Then x A(B) is in the cut space of ¥, and has integer coefficients. Moreover,
it depends on the choice of o only up to sign.

Proof. Apply the formula of Proposition 4.9 to the formula of Definition [4.6

for the characteristic vector, and factor the integer uy out of every coeffi-

cient. Meanwhile, replacing o with a different facet ¢/ € B merely multiplies
: A A _ A

all coefficients by e, /e7 , =e; ,, € {+1}. O

If T is a cellular spanning forest of ¥ and o € T4, then we define the
characteristic vector of the pair (T, o) by

X(0.0) = X (bo(T,0)) = ——X(T.). (12)
Example 4.11. Let © be the bipyramid of Example Every cellular
spanning forest T C © is torsion-free. Moreover, the relatively acyclic sub-
complexes I' that appear in equation are the spanning trees of the 1-
skeleton © (1) (see Section , which is the graph K5 with one edge removed;
Accordingly, we have puy = 7(6©(;)) = 75, so the calibrated characteristic
vectors are as in Example with all factors of 75 removed.

On the other hand, py is not necessarily the greatest common factor of the
entries of each uncalibrated characteristic vector, as the following example
illustrates.

Example 4.12. Consider the cell complex ¥ with a single vertex v, two
1-cells e; and eo attached at v, and four 2-cells attached via the boundary

matrix
oy 03 05 07

g € 2 3 0 0
e \O0 0 5 7))
Let B be the bond {o2,03}, so that the obvious candidate for a cut-vector
supported on B is the row vector [2 30 0]. On the other hand, taking

A = {05} (a cellular spanning forest of ¥\ B), the calibrated characteristic
vector of Theorem [1.10] is

xa(B)=1[10 15 0 0].
For T = AU {02}, the uncalibrated characteristic vector of Definition [4.6|is
X(T,09) = [100 150 0 0].

On the other hand, the calibration factor py is not ged(100,150) = 50, but
rather 10, since t;(Y) = 10 and the summation of equation has only
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one term, namely I' = ¥(qy. Similarly, for A" = {7} and T" = A’ U {02}, we
have

xa(B)=[14 21 0 0], x(T, o2)=[196 294 0 0], py =14.

Remark 4.13. Torsion plays a role in the characteristic vectors of bonds,
even when ¥ is a simplicial complex. For example, let 3 be the the complete
2-dimensional simplicial complex on 6 vertices and let T be the triangulation
of RPP? obtained by identifying opposite faces in an icosahedron. Then T is
a cellular spanning forest of ¥ (and in fact ¥ has twelve spanning forests of
this kind). For any facet o € T, we have bo(Y,0) = 33\ T2 U {c}, and the
entries of the calibrated cut-vector include both +2 (in position o) as well
as +1’s (in positions X\ T).

Remark 4.14. When ¥ is a graph and T is a spanning forest, puy is just
the number of vertices of ¥. Then, for any edge ¢ in T, the vector xy (o) is
the usual characteristic vector of the fundamental bond bo(Y, o).

Remark 4.15. Taking T = Y’ in the calculation of Proposition gives
the equality

td 1( )? d
E ta_ EF dtLu

which can be viewed as a dual form of the cellular matrix-forest theorem,
Theorem (enumerating relatively acyclic (d — 1)-subcomplexes, rather
than cellular spanning forests).

5. THE FLOW SPACE

In this section we describe the flow space of a cell complex. We begin by
observing that the cut and flow spaces are orthogonal to each other.

Proposition 5.1. The cut and flow spaces are orthogonal complements un-
der the standard inner product on Cy(¥;R).

Proof. First, we show that the cut and flow spaces are orthogonal. Let
a € Cuty =im 9 and f§ € Flowy = ker 93. Then o = 0%y for some (d — 1)-
chain ~, and («, B) = (0", B) = (v,95) = 0 by equation .

It remains to show that Cuty and Flow; have complementary dimen-
sions. Indeed, let n = dim Cy(X;R); then dimFlowy = dimkerdy = n —
dimim g = n — dimim 9 = n — dim Cut,. ([l

Next we construct a basis of the flow space whose elements correspond
to fundamental circuits of a given cellular spanning forest. Although cuts
and flows are in some sense dual constructions, it is easier in this case to
work with kernels than images, essentially because of Proposition As a
consequence, we can much more directly obtain a characteristic flow vector
whose coefficients carry topological meaning.

We need one preliminary result from linear algebra.
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Proposition 5.2. Let N be a matrix with ¢ columns and r rows such that
rank N = ¢ — 1. In particular, r > ¢ — 1 and dimker N = 1. Then ker N
has a spanning vector v = (v1,...,v.) such that

v; = £|T(coker N;)|

where Ny denotes the submatriz of N obtained by deleting the it" column.
In particular, v; # 0 for all 1.

Proof. Let @ be a r x r matrix whose first r — (¢ — 1) rows form a Z-module
basis for ker(NT), and whose remaining ¢ — 1 rows extend it to a basis
of Z" (see Proposition [2.1). Then @ is invertible over Z, and the matrix
P=QN = (NTQT)T has the form

0
p=[ar]
where M is a (¢ — 1) x ¢ matrix whose column matroid is the same as
that of N. Then ker N = ker P = ker M. Meanwhile, by Cramer’s rule,
ker M is the one-dimensional space spanned by v = (v1,...,v.), where
v; = (—1)*det My = =|coker M;| = +|T(coker P;)|. For each i, we have
a commutative diagram

o —

0 ——1im NV; im N, T(coker N;) —— 0
Ql Ql J/
0 —imP; im P T (coker P;) — 0

where the hat denotes saturation (see Section . Since @ is invertible,
it induces isomorphisms as labeled, so by the snake lemma, the third ver-
tical arrow is an isomorphism as well. Hence |T(coker P;)| = |T(coker N7)|,
completing the proof. O

Recall that a set of facets C' C ¥, is a circuit of the cellular matroid
M(X) if and only if it corresponds to a minimal linearly dependent set of
columns of dy. Applying Proposition with N = J¢ (i.e., the restriction
of 0 to the columns indexed by C), we obtain a flow vector whose support
is exactly C. We call this the characteristic vector ¢(C).

Theorem 5.3. Let C' be a circuit of the cellular matroid M(X), and let
A C X be the subcomplex ¥4_1) U C. Then

P(C) = 3 Hta1(A\ o) o

oeC

Proof. For o € C, let N5 denote N with the column ¢ removed. By Propo-
sition [5.2)], it suffices to show that the two groups
ker 8d_1 C’d_l(E; Z)

coker Nz =

HaalBA w2 =5 N, i N,
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have the same torsion summands. But this is immediate because ker 9,_1 is
a summand of Cy_1(X;7Z) as a free Z-module. O

Example 5.4. Consider the cell complex ¥ with two vertices vy and vy,
three one-cells eq, eo, and e, each one with endpoints v1 and v, and three
two-cells o1, o9, and o3 attached to the 2-cells so that the 2-dimensional
boundary matrix is
01 ()] g3
€1 2 2 0
8 = €9 —2 0 1
€3 0 -2 -1
The only circuit in ¥ is the set C of all three 2-cells; then ¢(C) = 201 +202+
403, because Ha(A\ 01;Z) = Ho(A\ 09;7) = 7 & Zy, but Hy(A\ 03;7Z) =
) Z2 &b ZQ.

For a cellular spanning forest T and facet o € Y, let ci(Y, o) denote the
fundamental circuit of o with respect to T, that is, the unique circuit in
TUo.

Theorem 5.5. Let X be a cell compler and Y C X a cellular spanning
forest. Then the set
{o(ci(T,0)): 0 & T}

forms a R-vector space basis for the flow space of 3.

Proof. The flow space is the kernel of a matrix with |X4| columns and rank
|T 4], so its dimension is |¥4| — |Y4|. Therefore, it is enough to show that the
¢(ci(Y, o)) are linearly independent. Indeed, consider the matrix W whose
rows are the vectors p(ci(Y,0)); its maximal square submatrix W’ whose
columns correspond to ¥\ T has nonzero entries on the diagonal but zeroes
elsewhere. g

Example 5.6. Recall the bipyramid of Example and its spanning tree

Y. Then ci(Y, 125) = {125, 123,135,235}, and ci(Y, 134) = {134, 123,124, 234}.
If we instead consider the spanning tree Y/ = {124,125, 134, 135,235}, then
ci(Y’,123) = {123,125,135,235}, and ci(Y’, 234) = {234, 124, 125,134, 135, 235}.
Fach of these circuits is homeomorphic to a 2-sphere, and the corresponding
flow vectors are the homology classes they determine. Furthermore, each

of {ci(Y,125),ci(Y,134)} and {ci(Y’,123),ci(Y’,234)} is a basis of the flow
space.

6. INTEGRAL BASES FOR THE CUT AND FLOW LATTICES
Recall that the cut lattice and flow lattice of X are defined as
C=C(¥)=img0; C7Z", F=F(X)=kergpd; CZ".

In this section, we study the conditions under which the vector space bases
of Theorems and are integral bases for the cut and flow lattices
respectively.
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Theorem 6.1. Suppose that X has a cellular spanning forest T such that
Hy 1(Y;Z) is torsion-free. Then

{x(T,0): 0 €T}

is an integral basis for the cut lattice C(X), where x(YT,0) is defined as in

equation .

Proof. Consider the n x r matrix with columns x(Y,o) for ¢ € YT4. Its
restriction to the rows Ty is diagonal, and by Theorem [4.7] and the hypoth-
esis on Hy 1(Y;Z), its entries are all 1. Therefore, the x (Y, o) form an
integral basis for the lattice Cuty(X) N Z™. Meanwhile,

(Cuta(S) NZ")/Ca(S) = T(HY(S: 2)) = T(Hy-1(5:2)

where the first equality is because Cuty(X) NZ" is a summand of Z", and
the second one is equation . On the other hand, I:Id,l(E; Z) is a quotient
of Hy_1(Y;7Z) of equal rank; in particular, T(Hy_1(X;Z)) = 0 and in fact
Cutg(X) NZ" = Cy(X). O

Next we consider integral bases of the flow lattice. For a circuit C, define

B(C) = ;wc)

where ¢(C) is the characteristic vector defined in Section [5{and ¢ is the ged
of its coefficients. Thus ¢(C) generates the rank-1 free Z-module of flow
vectors supported on C.

Theorem 6.2. Suppose that ¥ has a cellular spanning forest T such that
Hy 1(Y;Z) = Hy_1(X;Z). Then {¢(ci(Y,0)): o & T} is an integral basis
for the flow lattice F(X).

Proof. By the hypothesis on T, the columns of 9 indexed by the facets
in T form a Z-basis for the column space. That is, for every o € T, the
column 9, is a Z-linear combination of the columns of T'; equivalently, there
is an element w, of the flow lattice, with support ci(Y, o), whose coefficient
in the o position is £1. But then w, and ¢(ci(Y, o)) are integer vectors with
the same linear span, both of which have the gcd of their entries equal to 1;
therefore, they must be equal up to sign. Therefore, retaining the notation
of Theorem the matrix W’ is in fact the identity matrix, and it follows
that the lattice spanned by the @(ci(Y, 0)) is saturated, so it must equal the
flow lattice of . O

If ¥ is a graph, then all its subcomplexes and relative complexes are
torsion-free (equivalently, its incidence matrix is totally unimodular). There-
fore, Theorems and give integral bases for the cut and flow lattices
respectively. These are, up to sign, the integral bases constructed combina-
torially in, e.g., [I8, Chapter 14].
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7. GROUPS AND LATTICES

In this section, we define the critical, cocritical, and cutflow groups of a
cell complex. We identify the relationships between these groups and to the
discriminant groups of the cut and flow lattices. The case of a graph was
studied in detail by Bacher, de la Harpe and Nagnibeda [2] and Biggs [4],
and is presented concisely in [I8, Chapter 14].

Throughout this section, let ¥ be a cell complex of dimension d with n
facets, and identify both Cy(X;Z) and C%(¥;Z) with Z".

Definition 7.1. The critical group of ¥ is
K(X) := T(ker 9q—1/im 040;) = T(coker(im 040})).
Here and henceforth, all kernels and images are taken over Z.

Note that the second and third terms in the definition are equivalent
because kerd;_; is a summand of Cy_1(3;Z) as a free Z-module. This
definition coincides with the usual definition of the critical group of a graph
in the case d = 1, and with the authors’ previous definition in [I5] in the
case that X is Q-acyclic in codimension one (when ker 0q_1/im 040 is its
own torsion summand).

Definition 7.2. The cutflow group of ¥ is Z""/(C(X) & F(X)).

Note that the cutflow group is finite because the cut and flow spaces are
orthogonal complements in R™ (Proposition , so in particular C & F
spans R™ as a vector space. Observe also that the cutflow group does not
decompose into separate cut and flow pieces; that is, it is not isomorphic to
the group G = ((FlowqNZ")/ ker 0q) ® ((CutqNZ")/im d}), even when X is
a graph. For example, if 3 is the complete graph on three vertices, whose
boundary map can be written as

then ker 0 = span{(1,1,1)”} and im d = span{(1,-1,0)T,(1,0,-1)T}. So
G is the trivial group, while Z"/(ker 0q ® im 0;) = K1(X) = Zs.

In order to define the cocritical group of a cell complex, we first need to
introduce the notion of acyclization.

Definition 7.3. An acyclization of ¥ is a (d + 1)-dimensional complex
such that Q(d) = > and Hd+1 (Q;Z) = Hd(Q; Z) =0.

Algebraically, this construction corresponds to finding an integral basis
for ker 04(3) and declaring its elements to be the columns of 9441(€2) (so in
particular [Qq41)| = 34(%)). The definition of acyclization and equation
together imply that H41(Q;Z) = 0; that is, 0;,1(Q) is surjective.
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Definition 7.4. The cocritical group K*(X) is
K*(%) := C441(1;Z)/ im 0, 10q41 = coker Lgil.

It is not immediate that the group K*(X) is independent of the choice
of ©; we will prove this independence as part of Theorem [7.7} For the mo-
ment, it is at least clear that K*(X) is finite, since rank 97, ; = rank Lg‘jrl =
rank Cy41(€;7Z). In the special case of a graph, the cocritical group coin-
cides with the discriminant group of the lattice generated by the columns of
the “intersection matrix” defined by Kotani and Sunada [22]. (See also [5,
Sections 2, 3].)

Remark 7.5. Asin [15], one can define critical and cocritical groups in every
dimension by K;(X) = T(C;(%;Z)/im 0;110;, ;) and K (¥) = T(Ci(%; Z)/ im 05 ;).
If the cellular chain complexes of ¥ and W are algebraically dual (for exam-

ple, if ¥ and ¥ are Poincaré dual cell structures on a compact orientable
d-manifold), then K;(¥) = K _,(X) for all 4.

We now come to the main results of the second half of the paper: the
critical and cocritical groups are isomorphic to the discriminant groups of the
cut and flow lattices respectively, and the cutflow group mediates between
the critical and cocritical groups, with an “error term” given by homology.

Theorem 7.6. Let 3. be a cell complex of dimension d with n facets. Then
there is a commutative diagram

P

0——=7"/(C®F) ct/c T(HYS;Z)) —=0  (13)
- | ¥
0 — im 9,/ im 9,07 K(%) T(Hy 1(%;2) —=0

in which all vertical maps are isomorphisms. In particular, K(X) = C*/C.

Proof. Step 1: Construct the bottom row of . The inclusions im 040) C
im dy C ker d;_1 give rise to the short exact sequence

0 — im dg/ im 040;; — ker 04—1/1im 930 — ker 9y_1/im 9y — 0.

The first term is finite (because rankd; = rank 040}), so taking torsion
summands yields the desired short exact sequence.

Step 2: Construct the top row of . Let r = rank 9y, let {vy,..., v}
be an integral basis of C, and let V be the matrix with columns vy,...,v,.
By Proposition the dual basis {v},...,v*} for C* consists of the columns
of the matrix W = V(VTV)~!. Let v be the orthogonal projection R"® —
Cut(X¥), which is given by the matrix P = WVT = V(VTV)" VT (see
Proposition . Then

im = colspace [ [v] - vf] [v1-- -UT]T
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The i*" column of P equals W times the i*" column of V. If we identify
C* with Z" via the basis {v},...,v}}, then im(z) is just the column space
of VT. So C*/imv = Z/ colspace(VT), which is a finite group because
rank V' = r. Since the matrices V and V7 have the same invariant factors,
we have

Z" | colspace(VT) = T(Z"/ colspace(V)) = T(CY(X; Z)/im d}) = T(HY(S; 7).

Meanwhile, im ¢ O C because PV = V. Since ker ¢ = F, we have (im)/C =
(Z")F)/C = Z"/(C ® F). Therefore, the inclusions C C im1 C C* give rise
to the short exact sequence in the top row of .

Step 8: Describe the vertical maps in . The maps « and ( are each
induced by 9y in the following ways. First, the image of the cutflow group
under Jy is

04 (Z")(F®C)) = 0q (Z" ] (ker 04 & im 9)) = im 0/ im 040;;.

On the other hand, d; acts injectively on the cutflow group (since the latter
is a subquotient of Z"/ker ). So the map labeled « is an isomorphism.

The cellular boundary map 9 also gives rise to the map 3: C*/C — K (%),
as we now explain. First, note that 9;C# C img 9y C kerg 94_1. Second,
observe that for every w € C! and p € Cy_1(%;7Z), we have (Qw,p) =
(w,0%p) € Z, by equation and the definition of dual lattice. Therefore,
04CF C Oy (3 Z). Tt follows that d; maps C* to (kerg 04-1)NCy—1(3;2) =
kerz O4_1, hence defines a map 3: C*/C — kerz 04_1/ imz 0q0;;. Since Ct/Cis
finite, the image of (3 is purely torsion, hence contained in K (3). Moreover,
f3 is injective because (ker 93) N C* = F N C* = 0 by Proposition

Every element of R™ can be written uniquely as ¢ + f with ¢ € Cut(X)
and f € Flow(X). The map ¢ is orthogonal projection onto Cut(X), so
Og(c+ f) = 0gc = 0q(v(c+ f)). Hence the left-hand square commutes. The
map v is then uniquely defined by diagram-chasing.

The snake lemma now implies that kery = 0. Since the groups T(Hy_1(%; Z))
and T(H®(X;Z)) are abstractly isomorphic by equation (), in fact v must
be an isomorphism and cokery = 0 as well. Applying the snake lemma
again, we see that all the vertical maps in are isomorphisms. O

Theorem 7.7. Let X2 be a cell complex of dimension d with n facets. Then
there is a short exact sequence

0— T(Hy_1(3;Z) — Z")(C & F) — F*/F — 0. (14)
Moreover, K*(X) = Ft/F.

Proof. Let 2 be an acyclization of 3. By construction, the columns of the
matrix A representing dy11(2) form an integral basis for F = ker 9;. Again,
the matrix Q = A(AT A)~1 AT represents orthogonal projection R” — Flow(X).
The maximal minors of A have gcd 1 (because F is a summand of Z", so
the columns of A are part of an integral basis), so by Proposition the
columns of Q generate the lattice F*. Therefore, if we regard @ as a map
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of Z-modules, it defines a surjective homomorphism Z" — FH. This map
fixes F pointwise and its kernel is the saturation C := (C ® R) N Z". So we
have short exact sequences 0 — C — Z"/F — F#/F — 0 and

0—-C/C—Z"/(CHF)— FF —0.

Since C is a summand of Z" by Proposition we can identify C /C with
T(HY%;Z)) = T(Hy_1(X;Z)), which gives the short exact sequence (14)).
We will now show that F*/F = K*(X). To see this, observe that 054 (F¥) =

9.1 (colspace(Q)) = colspace(AT Q) = colspace(AT) = im &, = Car1(Q)
(by the construction of an acyclization). In addition, ker 9} ; is orthogonal
to F¥, hence their intersection is zero. Therefore, 034, defines an isomor-
phism F*¥ — C,;,1(Q). Moreover, the same map 0j,, maps F = ker 9y =
im g1 surjectively onto im0, ;0441. O

Corollary 7.8. If Hy_1(X; Z) is torsion-free, then the groups K(X), K*(%),
ct/c, FE/F, and Z"/(C © F) are all isomorphic to each other.

Corollary [7.§ includes the case that ¥ is a graph, as studied by Bacher,
de la Harpe and Nagnibeda [2] and Biggs [4]. It also includes the combina-~
torially important family of Cohen-Macaulay simplicial complexes, as well
as cellulations of compact orientable manifolds.

Example 7.9. Suppose that f{d(E; Z) = Z and that ﬁd,l(E; Z) is torsion-
free. Then the flow lattice is generated by a single element, and it follows
from Corollary [7.8] that K(¥) = K*(X) = F*/F is a cyclic group. For
instance, if 3 is homeomorphic to a cellular sphere or torus, then the critical
group is cyclic of order equal to the number of facets. (The authors had
previously proved this fact for simplicial spheres [15, Theorem 3.7], but this
approach using the cocritical group makes the statement more general and
the proof transparent.)

Example 7.10. Let ¥ be the standard cellulation ¢” U e! U e? of the real
projective plane, whose cellular chain complex is

Do=2 01=0
=5 —_

Z Z Z.

Then C = imd; = 2Z, C* = 1Z, and K(X) = C*/C = Z4. Meanwhile,
F=F = FF = K*(£) = 0. The cutflow group is Z. Note that the
rows of Theorem are not split in this case.

Example 7.11. Let a,b € Z\ {0}. Let X be the cell complex whose cellular
chain complex is

Oo= [a b] 01=0

Z Z Z.

Topologically, ¥ consists of a vertex e°, a loop e!, and two facets of dimen-
sion 2 attached along e' by maps of degrees a and b. Then

Cﬂ/CZZTa ZQ/(C@F):ZT/W :'rﬁ/f:Z

/9%
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where 7 = a? + b% and g = ged(a, b). Note that 7 = T9(2) is the complexity
of ¥ (see equation (3))) and that g = |H;(2;Z)|. The short exact sequence
of Theorem is in general not split (for example, if a = 6 and b = 2).

8. ENUMERATION

For a connected graph, the cardinality of the critical group equals the
number of spanning trees. In this section, we calculate the cardinalities of
the various group invariants of 3.

Examples and both indicate that K(X) = C!/C should have
cardinality equal to the complexity 7(X). Indeed, in Theorem 4.2 of [15],
the authors proved that |K(X)| = 7(X) whenever ¥ has a cellular spanning
tree Y such that ﬁd,l(T;Z) = Hy 1(3;7Z) = 0 (in particular, ¥ must be
not merely Q-acyclic, but actually Z-acyclic, in codimension one). Here we
prove that this condition is actually not necessary: for any cell complex,
the order of the critical group K(X) equals the torsion-weighted complexity
7(X). Our approach is to determine the size of the discriminant group C*/C
directly, then use the short exact sequences of Theorems and to
calculate the sizes of the other groups.

Theorem 8.1. Let ¥ be a d-dimensional cell complex and let t = t4-1(X) =
T(Hy1(5:2)). Then

CH/C| = |K(2)] = 7a(%),
|Z"/(C® F)| = 1a(X)/t, and
|FH/F| = |K*(D)] = 7a(2)/t2.

Proof. By Theorems and it is enough to prove that |C*/C| = 74(%).

Let R be a set of (d — 1)-cells corresponding to a row basis for 0 (hence a
vector space basis for Cut(X)); let R be the lattice spanned by those rows
(which is a full-rank integral sublattice of C); and let I' = (341 \ R)UX(4_9).
The inclusions R € C C C%(¥) give rise to a short exact sequence 0 —
C/R — HYX,T;Z) — HYX;Z) — 0. Since C/R is finite, the torsion
summands form a short exact sequence (see Section . Taking cardinalities
and using equation , we get

_ ‘T(ﬁd(zvraz))’ _ td71<27]‘1)
/Rl = IT(HYZ;Z))  tei(E) =
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The inclusions R € C C C* C RF give |[RY/R| = [RF/CH| - |CE/C| - |C/R].
Moreover, R¥/C! = C/R. By equation and Binet-Cauchy, we have

IR*/R| . td 1(2)?

ctiel = RYR
= e eR) ~ e /R
_ td—l(E)Q *
_71;(1_1(271_‘)2 det(aRaR)
tg-1(%)? 2
. = L) )
2 )
YCEy: [Y]=r t-1(2,T)

By Proposition the summand is nonzero if and only if T is a cellular
spanning forest. In that case, the matrix dry is the cellular boundary
matrix of the relative complex (Y,T"), and its determinant is (up to sign)
tq—1(Y,T), so by Proposition we have

_ ta— (Z)
C*/c| _;td(lzr) tg_1(T,T)? th |

with the sums over all cellular spanning forests T C Z. ([l

Dually, we can interpret the cardinality of the cocritical group as enumer-
ating cellular spanning forests by relative torsion (co)homology, as follows.

Theorem 8.2. Let €2 be an acyclization of 3. Then

|K*(3)| =Y [HHHQ,Z) =) |Hy(Q, Y5 Z))?
T T
with the sums over all cellular spanning forests T C 3.

Proof. Let 9441 = 9441(Q). Note that rank 9, = [4(X); abbreviate this
number as b. By Binet-Cauchy, we have

K*()| = |det 9 10um1] = >, (detdp)?
BCQy: |B|=b

where 0p denotes the submatrix of 0 with rows B. Letting T = ¥\ B, we can
regard Op as the cellular boundary map of the relative complex (2, T), which
consists of b cells in each of dimensions d and d+ 1. By Proposition the
summand is nonzero if and only if T is a cellular spanning tree of Q) = 2.
(Note that the d+1, B, T, )4 in the present context correspond respectively
to the d, R,T", T of Proposition ) For these summands, HT1(Q, T;Z) =
Hy(2,Y;7Z) is a finite group of order | det dp]. O

Remark 8.3. Let 7°(X) = Y.y [Ha(92, T;Z)|?, as in Theorem Then
combining Theorems and Theorems gives
Ct/Cl = [K(E) =7(8) =7(%)-t?
[FE/F| = |K*(5)| = (%) =7(%)/t?,
Z"/(CoF)|=7(X)/t =77(%) - ¢,
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highlighting the duality between the cut and flow lattices.

9. BOUNDS ON COMBINATORIAL INVARIANTS FROM LATTICE GEOMETRY

Let n > 1 be an integer. The Hermite constant 7y, is defined as the
maximum value of

min {(z,x # —1/n
(Lmin () (£5/2) (16)

over all lattices £ C R". The Hermite constant arises both in the study
of quadratic forms and in sphere packing; see [23 Section 4]. It is known
that , is finite for every n, although the precise values are known only for
1<n<8andn=24[].

As observed by Kotani and Sunada [22], if £ = F is the flow lattice of a
connected graph, then the shortest vector in F is the characteristic vector
of a cycle of minimum length; therefore, the numerator in equation is
the girth of G. Meanwhile, | F#/F| is the number of spanning trees. We now
generalize this theorem to cell complexes.

Definition 9.1. Let X be a cell complex. The girth and the connectivity
are defined as the cardinalities of, respectively the smallest circuit and the
smallest cocircuit of the cellular matroid of X.

Theorem 9.2. Let ¥ be a cell complex of dimension d with girth g and
connectivity k, and top boundary map of rank r. Let b = rank ﬁd_l(Z; 7).
Then

BV <y and g ()Y <,

Proof. Every nonzero vector of the cut lattice C contains a cocircuit in its
support, so minwec\{o}@, x) > k. Likewise, every nonzero vector of the flow
lattice F of ¥ contains a circuit in its support, so minger\jo1(z - ) > g.
Meanwhile, |C*/C| = 7 and |F*/F| = 7* by Theorem The desired
inequalities now follow from applying the definition of Hermite’s constant
to the cut and flow lattices respectively. ([l
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